If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-9x-20=0
a = 6; b = -9; c = -20;
Δ = b2-4ac
Δ = -92-4·6·(-20)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{561}}{2*6}=\frac{9-\sqrt{561}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{561}}{2*6}=\frac{9+\sqrt{561}}{12} $
| 8y+12=5y-1 | | 7+10x=-183 | | 4(u+8)=8u+48 | | -2+5m=3m+m | | 4x+6=51−5x | | x-1.6=2.7 | | (X-2/3)+(x+5/2)=1/3 | | X-2/3+x+5/2=1/3 | | 7x/6=28 | | -2(-5x+7)+x=-91 | | 35=x/5 | | t+1/t=6 | | 34=2(u+3)-6u | | 5-3m-4=-23 | | 4v=10 | | 7x=3x+9 | | 8b-5(1-8b)=283 | | 2x+2=-12+2x | | m-1/m=4 | | 9x-(3x+5)=4x-39 | | w+1/w=4 | | y^2+7y+5y+35+y^2-2y-2y^2+10y+65=0 | | 1/2x-x=26 | | 5x2-10x+4=0 | | 4x+8x-10=120 | | 4x/x+8=x+2/x+3 | | 0=1/2x-3/2 | | 180=3x+72+4x | | 3x^2-27+4x/4=0 | | -4(2n-7)=84 | | (y+5)(y+5+2)+y^2-2y-2y(y+5)+65=0 | | 81-x^2=2×^2 |